200 MHz Buncher Section

David Neuffer

with R. Palmer, V. Balbekov, A. Van Ginneken, C. Kim, G. Penn, ...

Buncher Section

Purpose:

- Split long bunch from rf rotation section (induction linac) into string of 200 (0r 175) MHz bunches for cooling section
- Transverse match from induction linac (B=1.25 T) Into cooling channel

Baseline Beam parameters from rf rotation

```
P<sub>μ,central</sub> ≅ 200 MeV/c
(Kinetic energy ≅ 120 MeV)
```

Longitudinal

```
L_{total} \cong 100 \text{ m } (\sigma_z \cong 16 \text{m})

\sigma_P \cong 8 \text{ to } 10 \text{ MeV/c} \quad (PJK ~ 4MeV/c)
```

Transverse:

```
\varepsilon_{T,N} \cong 0.015 \text{ m} \quad (\sigma_x \cong 8 \text{cm})
```

Cooling Channel beam parameters:

```
\sigma_z \cong 10 \text{cm}; \ \sigma_p \cong 15 \ \text{MeV/c} \ \beta_\perp \cong 0.3 \text{m} \ (\sigma_x \cong 5 \text{cm})
```

Possible Configuration

(C. Kim - 2-step buncher, 1.1m cells):

Case includes transverse matching solenoids

Feasibility study buncher:

(50m drift +100m induction linac + "minicool")

Beam after Buncher:

Distribution folded over 200 MHz periodicity:

R&D to do:

Optimize/ improve scenarios Rf capture ⇒ Cooling

Need more 6-D, integrated simulations

At output of induction linac, ΔE is too large

- \Rightarrow Output of buncher has ε_L is too large (overfills rf cooling bucket)
- ⇒ Large losses in buncher and cooling channel
- ⇒ Need energy cooling
 - ⇒Emittance exchange workshop (July at BNL)

Correlations -

δp-A² correlation has not been matched. Study effects and optimization possibilities.